LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - APRIL 2023

PST1MC03 - STATISTICAL MATHEMATICS

Date: 03-05-2023
Time: 09:00 AM - 12:00 NOON

SECTION A			
Answer ALL the questions			
1	Define the following.	($5 \times 1=5$)	
a)	Strictly monotonically increasing sequence	K1	CO1
b)	Extreme value	K1	CO1
c)	Riemann Integral	K1	CO1
d)	Linear Span	K1	CO1
e)	Minimal polynomial	K1	CO1
2	Fill in the blanks.	($5 \times 1=5$)	
a)	The nature of an infinite series remains unaltered if a finite number of terms are added or \qquad .	K2	CO1
b)	$\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$ is equal to	K2	CO1
c)	Let $f(x)=k$ ($=$ constant $)$ on $[\mathrm{a}, \mathrm{b}]$ and g be monotonically, non-decreasing on $[\mathrm{a}, \mathrm{b}]$. Then $\int_{a}^{b} f d g=$ \qquad	K2	CO1
d)	Any infinite set of vectors of V is linearly independent if its every finite subset is linearly	K2	CO1
e)	The characteristic roots of a skew-hermitian matrix are	K2	CO1
SECTION B			
	Answer any THREE of the following questions.	$(3 \times 10=30)$	
3	Prove that the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent.	K3	CO2
4	Discuss the points of discontinuity of the function defined on $[0,1]$ as follows: $f(x)=\left\{\begin{array}{cc} 0 & \text { if } x=0 \\ \frac{1}{2}-x & \text { if } 0<x<\frac{1}{2} . \text {. Also, examine the kinds of discontinuities. } \\ \frac{1}{2} & \text { if } x=\frac{1}{2} \\ \frac{3}{2}-x & \text { if } \frac{1}{2}<x<1 \\ 1 & \text { if } x=1 \end{array}\right.$	K3	CO2
5	Show that the vectors $\alpha_{1}=(1,2,1), \alpha_{2}=(2,1,0), \alpha_{3}=(1,-1,2)$ form a basis for R^{3}. Express each of the standard basis vectors as a linear combination of $\alpha_{1}, \alpha_{2}, \alpha_{3}$.	K3	CO2
6	If $f \in R[a, b]$, then prove that (i) $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$ if $b \geq a$ (ii) $m(b-a) \geq \int_{a}^{b} f(x) d x \geq M(b-a)$ if $b \leq a$; where m and M are the infimum and supremum of f on $[\mathrm{a}, \mathrm{b}]$.	K3	CO2

7	Determine the characteristic roots and the corresponding characteristic vectors of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ and also show that the matrix satisfies Cayley-Hamilton theorem.	K3	CO 2
SECTION C			
Answer any TWO of the following questions.		$(2 \times 12.5=25)$	
8	If $\left\{a_{n}\right\}$ is a sequence of positive real numbers such that $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right) \forall n \geq 3$, then prove that $\left\{a_{n}\right\}$ converges to $\frac{1}{3}\left(a_{1}+2 a_{2}\right)$.	K4	CO3
9	Evaluate the following limits (i) ${\underset{x}{x \rightarrow 0} 0}_{L t}\left(\cot ^{2} x-\frac{1}{x^{2}}\right)$ (ii) $\underset{\substack{\text { Lt }}}{L \rightarrow 0}\left(\frac{(1+x)^{1 / x}-e}{x}\right)$	K4	CO 3
10	If S , T are two subsets of a vector space V , then prove that (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(S U T)=L(S)+L(T)$ (iii) $L[L(S)]=L(S)$.	K4	CO3
11	(i)Apply Gram-Scmidt orthogonalization process to the vectors $\beta_{1}=(3,0,4)$, $\beta_{2}=(-1,0,7), \beta_{3}=(2,9,11)$ to obtain an orthonormal basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ for R^{3} with standard inner product. (ii).Which of the following functions T from R^{2} into R^{2} are linear transformation? (a). $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 0\right),(b) . T\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$.	K4	CO3
SECTION D			
	Answer any ONE of the following questions	$(1 \times 15=15)$	
12	(i) Using Cauchy's condensation test, test the convergence of the series $\begin{equation*} u_{n}=\frac{1}{(n \log n)^{p}}, n \geq 2 \tag{7+8} \end{equation*}$ (ii) Test the convergence of the series $\sum \frac{n!}{x(x+1)(x+2) \ldots(x+n-1)}$	K5	CO4
13	Reduce the following quadratic form to real canonical form and find its rank and signature $x^{2}+4 y^{2}+9 z^{2}+t^{2}-12 y z+6 z x-4 x y-2 x t-6 z t$.	K5	CO4
SECTION E			
Answer any ONE of the following questions		($1 \times 20=20$)	
14	Justify that every monotonic sequence either converges or diverges.	K6	CO5
15	(i).Test whether the following functions continuous and differentiable? (a) $f(x)=1+x$ if $x<2$ and $f(x)=5-x$ if $x \geq 2$ at the point $x=2$. (b) $f(x)=2+x$ if $x \geq 0$ and $f(x)=2-x$ if $x<0$ at the origin. (ii). Find the maximum and minimum values of the function $\sin x+\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x, 0 \leq x \leq \pi$.	K6	CO5

\$\$\$\$\$\$

