LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER – **APRIL 2023**

PST1MC03 – STATISTICAL MATHEMATICS

Date: 03-05-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

No.

Max.: 100 Marks

SECTION A

	Answer ALL the questions					
1	Define the following.	(5 x	1 = 5)			
a)	Strictly monotonically increasing sequence	K1	CO1			
b)	Extreme value	K1	CO1			
c)	Riemann Integral	K1	CO1			
d)	Linear Span	K1	CO1			
e)	Minimal polynomial	K1	CO1			
2	Fill in the blanks.	$(5 \times 1 = 5)$				
a)	The nature of an infinite series remains unaltered if a finite number of terms are added or	K2	CO1			
b)	$\lim_{x \to 0} \frac{a^x - b^x}{x}$ is equal to	K2	CO1			
c)	Let $f(x) = k$ (= constant) on [a,b] and g be monotonically, non-decreasing on [a,b]. Then $\int_{a}^{b} f dg = $	K2	CO1			
d)	Any infinite set of vectors of V is linearly independent if its every finite subset is linearly	K2	CO1			
e)	The characteristic roots of a skew-hermitian matrix are	K2	CO1			
	SECTION B					
	Answer any THREE of the following questions. ($(3 \times 10 = 30)$				
3	Prove that the sequence $\{a_n\}$ defined by $a_n = \left(1 + \frac{1}{n}\right)^n$ is convergent.	K3	CO2			
4	Discuss the points of discontinuity of the function defined on [0,1] as follows: $f(x) = \begin{cases} 0 & \text{if } x = 0\\ \frac{1}{2} - x & \text{if } 0 < x < \frac{1}{2} \\ \frac{1}{2} & \text{if } x = \frac{1}{2} \\ \frac{3}{2} - x & \text{if } \frac{1}{2} < x < 1\\ 1 & \text{if } x = 1 \end{cases}$ Also, examine the kinds of discontinuities.	K3	CO2			
5	Show that the vectors $\alpha_1 = (1,2,1)$, $\alpha_2 = (2,1,0)$, $\alpha_3 = (1,-1,2)$ form a basis for R ³ . Express each of the standard basis vectors as a linear combination of α_1 , α_2 , α_3 .	K3	CO2			
6	If $f \in R[a,b]$, then prove that (i) $m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a)$ if $b \ge a$ (ii) $m(b-a) \ge \int_{a}^{b} f(x) dx \ge M(b-a)$ if $b \le a$; where m and M are the infimum and supremum of f on [a,b].	К3	CO2			

	Determine the characteristic roots and the corresponding characteristic vectors of the		
7	matrix $_{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ and also show that the matrix satisfies Cayley-Hamilton	K3	CO2
	theorem.		
	SECTION C		
.		2 x 12.5	5 = 25)
8	If $\{a_n\}$ is a sequence of positive real numbers such that $a_n = \frac{1}{2}(a_{n-1} + a_{n-2}) \forall n \ge 3$, then prove that $\{a_n\}$ converges to $\frac{1}{3}(a_1 + 2a_2)$.	K4	CO3
	$\frac{1}{3}\left(a_{1}+2a_{2}\right)$		
9	Evaluate the following limits (i) $\underset{x \to 0}{Lt} \left(\cot^2 x - \frac{1}{x^2} \right)$ (ii) $\underset{x \to 0}{Lt} \left(\frac{(1+x)^{\frac{1}{x}} - e}{x} \right)$	K4	CO3
10	If S, T are two subsets of a vector space V, then prove that (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$ (ii) $L(SUT) = L(S) + L(T)$ (iii) $L[L(S)] = L(S)$.	K4	CO3
11	(i)Apply Gram-Scmidt orthogonalization process to the vectors $\beta_1 = (3,0,4)$, $\beta_2 = (-1,0,7), \beta_3 = (2,9,11)$ to obtain an orthonormal basis { $\alpha_1, \alpha_2, \alpha_3$ } for R ³ with	K4	CO3
	SECTION D		
		(1 x 15	5 = 15)
12	(i) Using Cauchy's condensation test, test the convergence of the series $u_n = \frac{1}{(n \log n)^p}, n \ge 2,$ (7+8)	K5	CO4
	(ii) Test the convergence of the series $\sum \frac{n!}{x(x+1)(x+2)(x+n-1)}$		
13	Reduce the following quadratic form to real canonical form and find its rank and signature $x^2 + 4y^2 + 9z^2 + t^2 - 12yz + 6zx - 4xy - 2xt - 6zt$.	K5	CO4
	SECTION E		
	Answer any ONE of the following questions		
A	Answer any ONE of the following questions	(1 x 2	0 = 20)
14	Answer any ONE of the following questions Justify that every monotonic sequence either converges or diverges.	(1 x 2) K6	0 = 20) CO5
			Í

\$\$\$\$\$\$\$